Minimizing a DFA
 Lecture 9
 Section 2.4

Robb T. Koether
Hampden-Sydney College
Mon, Sep 12, 2016

Outline

(1) Indistinguishable States
(2) The Algorithm
(3) Minimization Examples

4 Assignment

Outline

(9) Indistinguishable States

(2) The Algorithm

(3) Minimization Examples

4) Assignment

Indistinguishable States

Definition (Indistinguishable states)

Two states p and q in a DFA are indistinguishable if, for all $w \in \Sigma^{*}$,

$$
\delta^{*}(p, w) \in F \Leftrightarrow \delta^{*}(q, w) \in F .
$$

- That is, the decision of whether to accept or reject any input will be the same regardless of which of the two states we are currently in.
- To minimize a DFA, we will identify states that are indistinguishable.
- When two states are indistinguishable, one of them may be eliminated.

Indistinguishable States

- Indistinguishableness is an equivalence relation.
- Every state is indistinguishable from itself.
- If p is indistinguishable from q, then q is indistinguishable from p.
- If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.

Example

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Example

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Example

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Outline

(1) Indistinguishable States

(2) The Algorithm

(3) Minimization Examples

4) Assignment

Determining Indistinguishable States

- To determine which states are indistinguishable,
- Add a trap state, if necessary, to make the DFA fully defined.
- Begin with two equivalence classes: $F, Q-F$.
- This divides Q into two equivalence classes whose members are indistinguishable by "reading λ."

Determining Indistinguishable States

- Within each class, apply a single transition for each symbol in Σ to see which states are distinguishable.
- This divides Q into equivalence classes whose members are indistinguishable by reading a single input symbol.
- Continue in this manner until the next input symbol, no matter what is it, does not distinguish any states.

Outline

(1) Indistinguishable States

(2) The Algorithm

(3) Minimization Examples
(4) Assignment

Example

Example (Minimizing a DFA)

Minimize this DFA

Example

Example (Minimizing a DFA)

- The initial equivalence classes are

$$
F=\{10\}
$$

and

$$
Q-F=\{1,2,3,4,5,6,7,8,9\} .
$$

Example

Example (Minimizing a DFA)

$$
\{1,2,3,4,5,6,7,8,9\},\{10\}
$$

Example

Example (Minimizing a DFA)

- Summarize the transitions in the following tables.

	1	2	3	4	5	6	7	8	9			
\mathbf{a}	2	6	8	5	10	10	2	5	4			
\mathbf{b}	7	3	9	3	7	3	9	7	10			10
:---:	:---:	:---:										
\mathbf{a}	10											
\mathbf{b}	10											

- Identify each entry with one of the initial equivalence classes

	1	2	3	4	5	6	7	8	9
\mathbf{a}	A	A	A	A	B	B	A	A	A
b	A	A	A	A	A	A	A	A	B

B	
	10
\mathbf{a}	B
\mathbf{b}	B

Example

Example (Minimizing a DFA)

- There are three patterns within $\{1,2,3,4,5,6,7,8,9\}$ are $A A, B A$, and $A B$.
- These patterns subdivide the initial classes into the equivalence subclasses

$$
\{1,2,3,4,7,8\},\{5,6\},\{9\},\{10\} .
$$

Example

Example (Minimizing a DFA)

$$
\{1,2,3,4,7,8\},\{5,6\},\{9\},\{10\}
$$

Example

Example (Minimizing a DFA)

								A	2	3	4	7	8
\mathbf{a}	2	6	8	5	2	5							
\mathbf{b}	7	3	9	3	9	7							

B		
	5	6
\mathbf{a}	10	10
\mathbf{b}	7	3

C		D	
	9		10
a	4	a	10
b	10	b	10

Identify each entry with an equivalence subclass.

A							B			C		D	
	1	2	3	4	7	8		5	6		9		10
a	A	B	A	B	A	B	a	D	D	a	A	a	D
b	A	A	C	A	C	A	b	A	A	b	D	b	D

Example

Example (Minimizing a DFA)

- There are 3 different patterns within $\{1,2,3,4,7,8\}: A A, B A$, and $A C$.
- These patterns subdivide this equivalence class into three equivalence subclasses, yielding

$$
\{1\},\{2,4,8\},\{3,7\},\{5,6\},\{9\},\{10\} .
$$

Example

Example (Minimizing a DFA)

$$
\{1\},\{2,4,8\},\{3,7\},\{5,6\},\{9\},\{10\}
$$

Example

Example (Minimizing a DFA)

Example

Example (Minimizing a DFA)

- Identify each entry with an equivalence subclass.
- The patterns are the same within each class.
- There is no further subdividing.
- Therefore, the final equivalence classes are

$$
\{1\},\{2,4,8\},\{3,7\},\{5,6\},\{9\},\{10\} .
$$

Example

Example (Minimizing a DFA)

The equivalence classes of indistinguishable states

Example

Example (Minimizing a DFA)

The minimized diagram

Example

Example (Minimizing a DFA)

The minimized diagram

Example

Example (Minimizing a DFA)

- Minimize the following DFA.

Example

Minimizing a DFA

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and
$L_{1}=\{w \mid w$ starts with a and has an even number of symbols $\}$
$L_{2}=\{w \mid w$ starts with \mathbf{b} and has an odd number of symbols $\}$
- Construct a minimal DFA for $\left(L_{1} \cup L_{2}\right)^{*}$.

Outline

(1) Indistinguishable States
(2) The Algorithm
(3) Minimization Examples
(4) Assignment

Assignment

Assignment

- Construct an NFA for the concatenation $L_{1} L_{2}$ of the following languages over the alphabet $\{\mathbf{a}, \mathbf{b}\}$ and then minimize it.

$$
\begin{aligned}
& L_{1}=\{w \mid \text { the length of } w \text { is at most } 1\} \\
& L_{2}=\{w \mid \text { every odd position of } w \text { is } \mathbf{b}\} .
\end{aligned}
$$

